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Abstract. Traditionally, pathologists make diagnostic assessment based
on cell morphology and tissue distribution. However, this diagnosis de-
pends on the experience of the pathologists and, so, it leads to high vari-
ability. Image analysis approach enables to perform an objective judg-
ment by characterizing the images extracting quantitative measures. In
this work, we develop a pipeline that, using image analysis tools and ma-
chine learning techniques, can produce a diagnosis. Moreover, we apply
feature selection strategies to analyze the contribution of each extracted
feature to the predictive model.
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1 Introduction

According to the World Health Organization, cancer figures among the leading
causes of death worldwide with over 14 million of cases and over 8 million can-
cer related deaths in 2012. Prostate cancer is the most common noncutaneous
cancer among males and the sixth leading cause of death for men worldwide [8].
Although the causes of prostate cancer are not yet fully understood, it is known
that the chances of developing it increases with age.

The treatment of this kind of cancer depends on its malignancy level. The
chances of survival are generally high if diagnosed at an early stage, and decrease
at more advanced stages. Nowadays the diagnosis depends on the pathologists
personal experience and, therefore, this subjective judgment often leads to con-
siderable variability [7]. Therefore, to improve the reliability of the diagnosis, it
is necessary to develop a mathematical model to characterize the prostate cancer
features.

In order to characterize numerically the prostate cancer from Tissue Microar-
ray (TMA) images, it is necessary to extract features from each single image.
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Most cancer image analysis systems have been developed from cytologial speci-
mens, which only capture cells and, so, do no use any information at the tissue
level [14,13]. However, the analysis at tissue level provides information about
the structure of different pathological elements that are more important for the
diagnosis than the appearance of individual level. Despite the important role
at tissue level, research on image analysis targeting cancer tissue is not widely
available due to the difficulty and complexity involved in performing quantitative
tissue image analysis.

Previous works in automatic cancer diagnosis have focused on detecting
among several Gleasong grades [3,11], while others on detecting cancer on such
images [9,2]. All these works base their prediction on features that are not nor-
mally used by pathologists, e.g., the entropy and energy of the multiwavelet
coefficients.

Fig. 1: Computational steps in automatic cancer diagnosis.

Figure 1 shows the computational steps in automatic cancer diagnosis: pro-
processing, segmentation, feature extraction and machine learning. However, in
our approach, we consider the segmentation step as part of the preprocessing
step.

The goal of this work is to develop a prostate cancer diagnosis system for the
automatic detection of the presence of cancer given an image of a tissue. This is
done by examining histological properties of the tissue and cell nucleoids. We also
analyze three different preprocessing approaches and study the predictive power
of the features extracted. The software developed is available upon request.

2 Material and methods

In this section we describe the data and the methods used in this paper.
The study proposed in this paper was carried out on tissue samples obtained

from 50 patients with localized prostate cancer who underwent radical retropu-
bic prostatectomy at The Johns Hopkins Medical Institutions (Baltimore, MD)
between 1993 and 2001. These 50 patients were randomly selected from a previ-
ously published cohort that included 524 matched cases and controls [1]. A total
of 400 tissue cores were obtained, of which 196 cores of tumor and 102 cores of
paired normal tissue from the patients with prostate cancer, plus 102 cores of
nonprostate tissue.
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Images have to be preprocessed in order to remove noise and useless informa-
tion from them. In this work, we analyze three different preprocessing methods
that explore different approaches to characterize the cells. Below we explain them
in more detail.

Morphological image filtering This preprocessing pipeline is identified, from
now on, as P1. As we can see in the Figure 2, P1 involves six steps in order to
isolate cells from the tissue.

Fig. 2: Steps of the second preprocessing pipeline used in this study.

The first step, smoothing, consists of reducing the amount of intensity vari-
ation between one pixel and the next. We use a 3 × 3 mean filtering, which
replaces each pixel value with the mean value of its neighbours, including itself.
In the next step, contrast enhancement (soft contrasting in the pipeline), is per-
formed by histogram stretching keeping 0.5% saturated pixels. The values of the
saturated pixels determines the number of pixels in the image that are allowed
to become saturated. A colour deconvolution phase follows, in order to separate
the image into three channels, corresponding to the actual colours of the stains
used. Since hematoxylin mainly stains the cell nuclei, we can remove, from the
image, most of the tissue and artifacts. However, it is still hard to distinguish
the cells via image through analysis due to noise. Therefore, we perform a new
contrast enhancement method that uses anisotropic diffusion [12] to highlight
the cells and be able to remove the noise sorrounding the cell nuclei. The re-
maining artifacts will be removed in the next step by applying a binary filter,
which transforms the current image into a binary one. To set the threshold, the
method uses an iterative procedure based on the isodata algorithm. This step
results in a series of cells nuclei and artifacts that, in some cases, are empty. We
use a four-way Flood fill algorithm to fill such regions followed of the watershed
segmentation method. Finally, we remove such isolated regions that are smaller
than a given threshold. In this phase all object with a number of pixels lower
than 10 are removed.
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Fig. 3: Steps of the second preprocessing pipeline used in this study.

H&E clustering based pipeline This preprocessing pipeline, identified as P2,
consists of three steps (see Figure 3). The first one consists of removing the back-
ground pixels of the image by using the clustering technique K-means (K = 2).
As seeds, we used the vectors associated to black (rgb = (0, 0, 0)) and white (rgb
= (255, 255, 255)) colours. Those pixels associated with the later cluster will be
considered background pixels and, therefore, set to white pixels. The next step is
to perform clustering taking into account the H&E-stain and the white colour to
avoid the contamination of background pixels on any of the other clusters. There-
fore, we set K = 3 with the following seeds: 1) white (rgb = (255, 255, 255));
2) haematoxylin-stained pixels (rgb = (0.490157, 0.768971, 0.410402)); and 3)
eosin-stained pixels (rgb = (0.046153, 0.842068, 0.537393)). This step will gen-
erate, at the cell-level, many isolated objects. Then, after a visual analysis, we
remove those objects with a number of pixels smaller than 10.

H&E based rule This pipeline, identified as P3, only requires the use of a
single filter. We use te property of the H&E stain, which allows to distinguish
between cells and tissue or artifacts. Hematoxylin is a dark blue or violet stain
that reacts with cells while eosin is red or pink and stains the non-cell objects
of the image.

Fig. 4: Steps of the third preprocessing pipeline used in this study.

Therefore, in order to filter out non background pixels, we impose the fol-
lowing constrains on pixels in:

– The difference between the green and blue values must be greater than a
given threshold µgb.

– The difference between the red and blue values must be greater than a given
threshold µrb.

– The difference between the highest total intensity (sum of the red, green and
blue colours of a white pixel) and the total intensity must be lower than a
given threshold λi.
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The last constrain defines how close the total intensity of a cell pixel should
be to the white one. We tested several values and finally we set µgb = µrb = −5
and λi = 420

2.1 Feature extraction

In this work, we aim at extracting features to quantify the properties of cell struc-
tures and changes in the cell distribution across the tissue. Therefore, prostate
cancer images are characterized by extracting features at cell-level. In order to
do so, we measure morphological features (which provides information about the
size of a nucleus or a cell), color-intensity (measured on the intensity histogram
of the pixels located in a nucleus or a cell) and topological features (which inform
on the cellular structure of a tissue by quatifying the spatial distribution of its
cells).

In this work we consider the following features.

Morphological features Given S = {s1, . . . , sn} a set of boundary pixels of a
cell, and C its centroid, we extract the following morphological features defined
on S, where M(µ) and M(σ) denotes the mean and starndard deviation of a
measure M:

– Area Ma is the number of pixels within the boundary. We consider M(µ)
a

and M(σ)
a .

– Perimeter MP is the number of pixels in the boundary, and is measured as
the sum of the distances between every consecutive boundary pixels: MP =
|sns1|+

∑n−1
i=1 |sisi+1|

– Compactness MCo =
M2

P
MA

, associates the perimeter and the area of S
– Centroid Gravity MG determines the average coordinates of S. We extract

a feature for each coordinate, and is computed with the following formula:

MG =

{
MGx =

∑n
i=1 xi,

MGy =
∑n

i=1 yi.

Colour-intensity features Colour-intensity features are potentially useful in
prostate cancer images since our sample is composed of H&E stained prostate
cancer images. As colour space, we use the RGB model, and, for each colour
channel, we extract the first two statistical moments and the best range of pix-
els from histogram. For a given colour channel C and the set of pixel pC =
{p1, . . . , pn}C , C = {r, g, b}, the features extracted are shown below:

– Mean (I
(µ)
C = 1

n

∑n
j=1 pCj), obtained by averaging the pixel values for each

colour channel.

– Standard deviation (I
(σ)
C

(
1
n

∑n
j=1(pCj−I

(µ)
C )2

)1/2

), calculated over the pixel

values on the given colour channel.
– Interval [IiC , I

f
C ] is obtained from the histogram and it has been defined so

that it is centered at I
(µ)
C and it includes 90% of the pixel values.
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Topological features These features measure the structure of a tissue by quan-
tifying the spatial distribution of its cells. For that, it is necessary to encode the
spatial interdependency of the cells prior to the feature extraction. In this work
we encode this dependency between adjacent cells by using the Voronoi diagram,
the Delaunay triangulation and the graph approach.

– Voronoi Diagrams represent a partitioning of the image into a set of non-
overlapping regions that constitutes convex polygons. Each polygon contains
a cell and every point in its region is closer to this cells than to another one
in the tissue. When creating the Voronoi diagram on tissue image, border
polygons tend to be larger and so we discarded them to avoid any bias due
to border effect. We remove the 4% larger polygons. The list of features
extracted is, then:

• Area, Va of the polygons. We extract V(µ)
a , V(σ)

a and the median V(m)
a .

• Area disorder [10], Vd = 1 − 1

1+
V(σ)
a

V(µ)
a

reflects the variation in the area of

the Voronoi polygons.
• Average Roundness Factor Vr = 4π

p2 [10] calculates the average of the
roundness factor of the polygons. with p the perimeter of a polygon.

• Roundness Factor disorder Vrd = 1− 1

1+
V(σ)
r

V(µ)
a

[10] measures the variation

of Vr for all polygons. A value of 1 means that all Vr are equal while 0
otherwise.

• Density Vρ = #polygons∑
Va

[10] measures feature the density of the voronoi

polygons.

– Delaunay triangulation is the dual graph of the Voronoi diagram. It con-
structs a triangular graph that cover the area of the image. In tissue images,
such network consist of non-overlapping triangles so that each vertices cor-
respond to nuclear centroids. The extracted features are:

• Length of segments D� generated in the Delaunay graph.
• Delaunay segment length disorder Dd = 1

1+
D(σ)

�

D(µ)
�

measures the variation

of D� for all segments.

– Graph-based features In this approach, the dependency between every pair of
cells is enconded with a graph. Vertices correspond to nuclear centroids while
edges are probabilistically assigned between the vertices; the probability of
the existance of an edge between a pair of vertices decays with the increasing
Euclidean distance between them [5]. To construct the graph we use the
Waxman model [16]. The list of features extracted are:

• Degree of nodes Gd of the graph.
• Weighted degree of nodes Gw of the graph.
• Clustering coefficient Gc [15] measures, for a given vertex v, the fraction

between the number of connections kv of such vertex, and the maximum

number of connections it can have
(

kv(kv−1)
2

)
. The feature is define as

the average over all vertices of the graph.
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2.2 Machine Learning methods

It is well known that, in general, not all features contribute equally to the classi-
fication. Therefore, removing irrelevant feature may yield better predictive mod-
els. In this context the aim of the feature selection is to find the optimal feature
subset, from the original feature set. The goodness of a particular feature subset
is evaluated using an objective function, J(S), where S is a feature subset of size
|S|.

In this work we use three popular and widely used classifiers due to their good
performance in general: Bayesian Network Classifier (BNC), the open source
Java implementation of the C4.5 algorithm termed J48 and the Support Vector
Machine (SVM). As feature selection algorithms, we selected the Fast Correlation
Based Filter [17] (FCBF) and the Scatter Search (SS) metaheuristic [4]. FCBF
is a popular and efficient while SS is an evolutionary strategy that achieves
very competitive results. In this work, SS measures the quality of the subsets by
means of the Correlation Feature Selection (CFS) function [6].

3 Results

In this section we present the results of experiments performed in order to assess
the effectiveness of the proposed pipelines and the classification performance
of the features extracted from the images. Moreover, we performed a feature
selection analysis to select the most informative features. K-fold cross validation
was used, where k was set to 5.

As performance measures, we use the classification error, the sensitivity and
specificity averaged over the folds. In our data positive examples refer to prostatic
carcinoma images while negatives to control cases. Therefore, sensitivity, also
called true positive rate or recall, measures the proportion of actual positives
which are correctly identified as such. Higher values mean that more cases of
carcinoma are detected. Specificity is the proportion of actual negatives which
are identified as such. Higher values correspond to lower probability of false
positives, i.e., that a control case be classified as carcinoma case. Finally, we also
report the average number of features selected by each strategy.

3.1 Baseline classification results

The performances of the baseline classifers are shown in Table 1. The first column
shows the classifier used. Then, for each pipeline developed, the table presents
the sensitivity, the specificity and the accuracy, respectively.

The highest performance is achieved using P2 with BNC. With the same
classifier, P1 obtains results slightly lower. However, the capacity for detect-
ing carcinoma cases (sensitivity) is higher for P1 than for P2, although it also
presents a higher false positive rate. Therefore, P2 presents a more balanced
performance. With J48, P3 obains the highest accuracy but in all cases, the
specficity is lower than 0.7. Finally, linear SVM is the classifier that obtains the
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Table 1: Baseline classification results achieved with the different pipelines for
BNC, J48 and linear SVM.

pipeline P1 P2 P3

clf sens. spec. acc. sens. spec. acc. sens. spec. acc.

BNC 0.827 0.637 76.18 0.791 0.716 76.51 0.765 0.657 72.82

J48 0.750 0.598 69.80 0.791 0.618 73.15 0.791 0.667 74.83

SVM 0.832 0.343 66.44 0.454 0.627 51.34 0.668 0.696 67.80

lowest results. With P1, the sensitiviy is high but the specificity is too low to be
considered a good predictive model. Only using the third pipe line does SVM
achieves acceptable results. Pipeline P3 seems to be the most robust, since all
the classifiers obtains relatively good results with it.

3.2 Feature selection analysis

Results obtained when applying feature selection are shown in Table 2. The first
column refers to the feature selection algorithm. Then, the classifier used or the
number of features is presented. The information about the number of features
is given in the last row of each algorithm. Finally, for each pipeline, the table
shows the sensitivity, specificity and accuracy respectively.

Table 2: Classification results achieved after applying feature selection with the
different pipelines for BNC, J48 and linear SVM.

pipeline P1 P2 P3

A clf sens. spec. acc. sens. spec. acc. sens. spec. acc.

SS

BNC 0.842 0.647 77.52 0.801 0.637 74.50 0.760 0.696 73.83

J48 0.750 0.637 71.14 0.760 0.647 72.15 0.776 0.657 73.50

SVM 0.270 0.735 42.95 0.847 0.471 71.82 0.531 0.578 54.70

#feats 7 11 8

FCBF

BNC 0.786 0.637 73.49 0.867 0.392 70.47 0.745 0.598 69.46

J48 0.714 0.598 67.45 0.791 0.559 71.14 0.781 0.510 68.80

SVM 0.827 0.431 69.13 0.724 0.510 65.10 0.526 0.480 51.01

#feats 2 2 2
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The first thing we notice, is that FCBF only selects two features. M(σ)
a is

selected in all the cases, Vd in pipeline 1 and 3 and I
(σ)
b in pipeline 2. SS is the

strategy that achieves the highest accuracy using P1 with BNC. In this case,
the model outperforms the baseline classifier in all performance measures. In P2

the application of SS degrades the model with BNC and J48, while it improves
the results achieved by SVM. Finally, in P3, only results with BNC outperforms
the baseline results. As a conclusion, we can state that FCBF finds, in all cases,
smaller subsets of features than SS at the expense of degrading the classifier
performance. In all cases, except in P1 with SVM, SS outperforms FCBF. The
list of features selected in each case can be found in Table 3.

Table 3: List of features selected by each SS and FCBF.

A P1 P2 P3

SS
M(µ)

a ,M(σ)
a ,V(µ)

a

V(σ)
a ,Vd,Dd, G(σ)

w

V(µ)
a , V(σ)

a ,Vd, Dd

D(µ)
� ,D(σ)

� ,I(σ)
g ,I

(σ)
b

If
g ,If

b

V(σ)
a ,V(m)

a , Vρ

Vd,Dd,Dd,I
f
b

FCBF M(σ)
a ,Vd M(σ)

a ,I
(σ)
b M(σ)

a ,Vd

4 Conclusion

In this work we have proposed three different pipelines to characterize H&E
stained prostate cancer images. Among these pipelines, the morphological-based
pipeline is the one that achieves the highest results after applying feature selec-
tion. In this case, the image is characterized by the mean and standard deviation
of the cell area, the mean and standard deviation of the voronoi diagrams, the
area disorder and the standard deviation of the weighted degree of the nodes.

The results achieved in this paper are promising. However more development
are necessaries in order to improve the results obtained. With this in mind, we are
planning to study other data representations and to apply other feature selection
mechanisms. Moreover, we believe that the results achieved could be improved
by considering a wider range of unsupervised and supervised strategies. This
would most likely also contribute to increase the knowledge in this domain. We
also intend to apply the strategy proposed in this paper to other images datasets
relative to other type of cancer.
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4. Garćıa-López, F., Garćıa-Torres, M., Melián-Batista, B., Moreno-Pérez, J.,
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