
305

Actas de la XVII Conferencia de la Asociación Española para 
la Inteligencia Artificial, pp. 305-314

© Ediciones Universidad de Salamanca

A Weighted Penalty Fitness for a Hybrid
MOGA-CSP to solve Mission Planning Problems

Cristian Ramirez-Atencia1, Gema Bello-Orgaz1,
Maria D. R-Moreno2, and David Camacho1
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Abstract. Unmanned Aerial Vehicles (UAVs) are currently booming
due to their high number of potential applications. In Mission Planning
problems, several tasks must be performed by a team of UAVs, under
the supervision of one or more Ground Control Stations (GCSs). In our
approach, we have modelled the problem as a Constraint Satisfaction
Problem (CSP), and solved it using a Multi-Objective Genetic Algorithm
(MOGA). The algorithm has been designed to minimize several variables
of the mission such as the fuel consumption or the makespan. In addition,
the fitness function takes a new consideration when solutions are not
valid. It uses the number of constraints fulfilled for each solution as a
weighted penalty function. In this way, the number of constraints fulfilled
is maximized in the elitism phase of the MOGA. Results show that the
approach outperforms the convergence with respect to previous results.

Keywords: Unmanned Aerial Vehicles, Mission Planning, Constraint
Satisfaction Problems, Multi-Objective Genetic Algorithm

1 Introduction

The current boom of Unmanned Aerial Vehicles (UAVs) capabilities has opened
up new commercial applications for the industry. These vehicles can be used
in many domains such as surveillance [2], flight training [10] or disaster and
crisis management, since they avoid risking human lives while their manage-
ability permits to reach areas of hard access. Mission Planning for a team of
UAVs involves generating tactical goals, commanding structure, coordination,
and timing. Nowadays, UAVs are controlled remotely by human operators from
Ground Control Stations (GCSs), using rudimentary planning systems, such as
following preplanned or manually provided plans.

Multi-UAV Cooperative Mission Planning Problems (MCMPPs) have a lot
of requirements that need to be considered in order to coordinate all the UAVs.
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These requirements generate search graphs that need huge process capabilities to
find a solution. Nevertheless, there exists some works on UAV Mission Planning
using Temporal Action Logic (TAL) for reasoning about actions and changes [4],
Markov Decision Process (MDP) and dynamic programming algorithms [5], or
hybrid Partial-Order Forward-Chaining (POFC) [6], among others.

Other modern approaches formulate the tactic mission planning problem as
a Constraint Satisfaction Problem (CSP) [1]. A CSP consists of a set of variables
(each one with its own domain) and a set of constraints restricting the values
that variables can simultaneously take. So MCMPPs could be modelled as a
CSP guided to find a correct schedule of UAV-task assignments.

In addition, Multi-UAV missions usually require the use of several GCSs for
controlling all the UAVs involved. This generates a new Multi-GCS approach
that makes the problem even more complex. Besides there are several parame-
ters which can be used to define the quality of a solution, so an option to solve
this type of problems could be using Multi-Objective Evolutionary Algorithms
(MOEAs). In this work, we have extended a previous work [8] in order to de-
sign and implement a Multi-Objective Genetic Algorithm (MOGA) to solve the
MCMPP. In this sense, the fitness function has been extended as follows. If all
the constraints are fulfilled in the solution plan, then a Pareto-based function
is used to optimize different quality parameters. Otherwise, the number of con-
straints fulfilled is used as a weighted penalty fitness. This heuristic intends to
decrease the number of generations needed to converge to an optimal Pareto
Optimal Frontier (POF) and, therefore, reduce the runtime of the algorithm as
the experiments show.

The rest of the paper is structured as follows. Section 2 describes how a
UAV Mission is defined. Section 3 presents the hybrid MOGA-CSP algorithm
developed with the new fitness function considering the number of constraints.
In Section 4 the new approach is tested against several mission datasets and
compared with a previous approach. Finally, the last section presents the final
analysis and conclusions of this work.

2 UAV Mission Planning

The MCMPP [9] can be defined as a number n of tasks, T = {t0, t1, ...tn},
performed by a team of mUAVs, U = {u0, u1, ...um}, at a specific time interval.
Each mission should be performed in a specific geographic zone. In addition, in
this approach, there exist a number l of GCSs, G = {g0, g1, ..., gl}, controlling
these UAVs. A solution for a mission planning problem should be the assignment
of each task to a specific UAV, and each UAV to a specific GCS, ensuring that
the mission can be successfully performed.

There exists different kind of tasks (e.g. photographing or escorting a tar-
get, monitoring a zone, etc.). Some of them could be Multi-UAV, i.e. they are
performed by several UAVs (e.g. mapping an area, also called Step & Stare)
reducing the time needed to perform the task. Tasks can be carried out thanks
to the sensors available (i.e. Electro-optical or Infra-red (EO/IR) cameras, Syn-
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thetic Aperture Radar (SAR), Maritime Patrol Radar (MPR), etc.) by the UAVs
performing the mission. In addition, each task must be performed in a specific
geographic area and in a specific time interval.

In Figure 1, a Mission Scenario with 8 tasks (represented in green), 5 UAVs
and 3 GCSs is presented. As can be seen in this figure, the zone of the mission
could contain some No Flight Zones (NFZs), represented in red. These zones
must be avoided in the trajectories of the UAVs during the mission.

Fig. 1: Mission with 8 tasks (2 of them Multi-UAV), 5 UAVs and 3 GCSs.

Additionally, the vehicles performing the mission have some features that
must be taken into account in order to check if a mission plan is correct: its
initial position, its initial fuel, its autonomy or maximum flight time, its
range or maximum flight distance, its cost per hour of usage, its available
sensors, and one or more flight profiles. A vehicle’s flight profile specifies at
each moment its speed, its fuel consumption ratio and its altitude.

When a task is assigned to a vehicle, it is necessary to compute the duration
of the path between the zone of the UAV’s departure and the zone of the task
start. If a task is the last one assigned to a vehicle, in addition, the duration
of the return from this last task to the base must be calculated. In order
to compute these durations, it is necessary to know which of the UAV’s flight
profiles will be used, providing the fuel consumption ratio, speed and altitude as
previously mentioned. For this reason, in these cases, the flight profiles used
must also be assigned to solve the mission.

Finally, a mission could have some time and vehicle dependencies between
different tasks. Vehicle dependencies consider if two tasks must be assigned
the same UAV or different UAVs. Moreover, we consider time dependen-
cies given by the Allen’s Interval Algebra.
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3 Proposed MOGA-CSP Algorithm

To deal with the huge amount of constraints and the big search space of the prob-
lem, a hybrid approach based on MOGA and CSP is proposed for the MCMPP.
There exists several approaches for hybridizing MOGAs and CSPs [7].

In our approach, the CSP is considered inside the fitness function of the
MOGA, checking that the solutions fulfil all the constraints. When a solution
does not fulfil some constraint, the number of constraints checked until fail in
the propagation phase of the CSP is used as a weighted penalty function in
order to reproduce the solutions fulfilling the highest number of constraints.
This methodology will help the algorithm to converge faster when the space
of solutions is very small compared to the search space, causing the randomly
generated initial population to maybe not reach any valid solution.

3.1 Encoding

The encoding of this new approach consists of six different alleles representing
the features described in the previous section. These alleles are divided into three
groups according to their applicability of operators:

1. The first group of alleles is composed of three alleles of size n each one:

– UAVs assigned to each task.
– Flight profiles used for each UAV to each assigned task.
– Sensors used for the task performance by each UAV.

If the Ti task is Multi-UAV, then the corresponding cell of each allele contains
a vector representing the different UAVs, flight profiles or sensors assigned
to this task. In Figure 2, an example of this group for a mission with 5 tasks
and 3 UAVs is presented. In the reproduction phase of the algorithm, this
group of alleles is applied a 2-point crossover and an uniform mutation.

Fig. 2: Example of the first group of alleles from an individual representing a
possible solution for a problem with 5 tasks and 3 UAVs. min refers to Minimum
Consumption Profile, max to Max Speed Profile, mR to MPR, sR to SAR, iR
to Inverse Synthetic Aperture Radar (ISAR) and eiS to EO/IR Sensor.

2. The second group is composed of an allele representing the permutation of
the task orders. As described in a previous approach [8], these values are
used to indicate the order in which each UAV performs the tasks assigned
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to it. It is only used if there are several tasks assigned to the same UAV.
In Figure 3 an example of this allele is presented, which together with the
first allele (assignments) of Figure 2 shows that UAV 1 performs tasks 1 and
3 in this order; UAV 2 performs task 4; and UAV 3 performs tasks 5, 2, 1
and 4. In the reproduction phase, this allele is applied a Partially-Matched
Crossover (PMX) and an Insert Mutation.

Fig. 3: Example of the second group of alleles from an individual representing
a possible solution for a problem with 5 tasks and 3 UAVs. The permutation
constraints the values of genes to be different and in the range 0 to n− 1.

3. The third group of alleles is composed of two alleles of size m each one:

– GCSs controlling each UAV.
– Flight Profiles used by each UAV to return to the base.

In Figure 4, an example of this group for a mission with 3 UAVs and 2 GCSs
is presented. In the reproduction phase of the algorithm, this group of alleles
is applied a 2-point crossover and an uniform mutation.

Fig. 4: Example of the third group of alleles from an individual representing a
possible solution for a problem with 3 UAVs and 2 GCSs. min refers to Minimum
Consumption Profile and max to Max Speed Profile.

3.2 Fitness Function

The fitness function of the algorithm considers a CSP modelling of the problem
in order to check that all constraints are fulfilled for a given solution. This CSP
model considers as variables the alleles of the encoding previously presented.
In addition, it is necessary to define some extra variables that are computed in
the propagation phase of the CSP solver. These variables are the time points
(departure, start and end) and durations (durPath, durTask, durReturn) of
the mission, as well as fuel consumptions (fuelPath, fuelTask, fuelReturn).
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On the other hand, the CSP considers several constraints related to the
complexity issues explained in the previous section, checked in a specific order:

1. Sensor constraints: they check if a UAV has the sensor needed to perform
its assigned tasks.

2. Order constraints: they assure that the values of the order variables are
less than the number of tasks assigned to the UAV performing that task.

3. Dependency Constraints: these constraints are related to the time and
vehicle dependencies mentioned in the previous section. Path consistency is
checked with these dependencies and the orders of the tasks.

4. GCS constraints: they assure that the GCSs assignments are correct,
UAVs are assigned to GCSs able to control them, and they are located
within the GCS coverage area.

5. Path constraints: they assure for every assignment that the UAVs are able
to reach the task zone avoiding the NFZs of the scenario and maintaining
the line of sight with the GCSs controlling them.

6. Temporal constraints: they assure the consistency of all the time variables.
7. Fuel constraints: they assure that the fuel consumed by each vehicle is less

than its initial fuel.
8. Autonomy constraints: they assure that the total flight time for each

vehicle is less than its vehicle autonomy time.
9. Distance constraints: they assure that the distance traversed by each

vehicle is less than its range.
10. Distance between UAVs constraints: they assure that UAVs keep a safe

distance during the entire mission.

When a solution is invalid, the number of constraints fulfilled before the
failure of some invalid constraint is returned. In this case, the fitness of the
solution is assigned for each objective its upper bound minus the number of
constraints fulfilled, in order to maximize them. This way, if no solution is valid,
then the solutions satisfying the highest number of constraints are considered for
next generation. We have denominated this fitness as Weighted Penalty Fitness
(WPF), while previous approach uses a Binary Penalty Fitness (BPF).

On the other hand, if all constraints are fulfilled, the fitness works as a multi-
objective function minimizing the objectives of the problem:

– The number of UAVs used in the mission
– The total flight time
– The total fuel consumption
– The total distance traversed
– The total cost of the mission
– The end time of the mission, or makespan

3.3 Algorithm

Algorithm 1 shows this new approach presented so far. Lines 8-13 show the
implementation of the fitness function previously explained. After evaluation, a
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µ elitist selection based on NSGA-II approach [3] is performed (Line 18). Then,
a roulette wheel selection over these N individuals (Line 21) selects those that
will be applied the genetic operators.

Algorithm 1: Hybrid MOGA-CSP algorithm for MCMPPs

Input: A mission M = (T, U,G) where T is a set of tasks to perform denoted
by {t1, . . . , tn}, U is a set of UAVs denoted by {u1, . . . , um} and G is a
set of GCSs denoted by {g1, . . . , gl}. The set of objectives O and their
upper bounds M = {Mi >> avg(oi)}. And positive numbers
generations, population, µ, λ, mutprobability and stopGeneration

Output: POF obtained with best solutions
1 S ← randomly generated set of population of p chromosomes
2 i ← 1
3 convergence ← 0
4 pof ← ∅
5 while i ≤ generations ∧ convergence < stopGenerations do
6 newS ← ∅
7 F ← ∅
8 for j ← 1 to p do
9 [valid, numV alidConstraints] = CSPCheck(Sj)

10 if valid then
11 F ← F ∪MultiObjectiveF itness(Sj)

12 else

13 F ← F ∪ (M − numV alidConstraints)

14 newpof ← createPOF (S)
15 if newpof = pof then
16 convergence ← convergence+ 1

17 pof = newpof
18 Sbest ← SelectNSGA2Best(µ, F )
19 newS ← Sbest
20 for j ← µ to λ do
21 p1, p2 ← RouleWheelSelection(Sbest)
22 i1, i2 ← Crossover(p1, p2)
23 i1 ← Mutation(i1,mutprobability)
24 i2 ← Mutation(i2,mutprobability)
25 newS ← newS ∪ {i1, i2}
26 S ← newS
27 i ← i+ 1

28 return pof

Next, we use a proper crossover operator (Line 22), consisting of a specific
crossover operation for each group of the alleles of the representation, as ex-
plained in section 3.1 Then, a mutation operator (Lines 23-24) will be applied
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depending on a probability Pm. This mutation operator, as well as the crossover,
consists of a specific mutation for each group of alleles of the encoding.

Finally, the stopping criteria designed for this algorithm compares the non
dominated solutions obtained so far at each generation with the solutions from
the previous generation (Line 15). If the solutions from a previous generation
remains unchangeable for a number of generations, then the algorithm will stop
and return these solutions as an approximation of the POF.

4 Experimental Results

In order to test this new approach, four Mission Scenarios have been designed
(see Table 1). In each scenario, tasks, UAVs, GCSs and NFZs are scattered
throughout the map. Each UAV has different sensors and each task can be
performed by different sets of sensors, so there are several possible solutions. On
the other hand, each UAV has been set with a different amount of initial fuel.
The increasing complexity of these datasets allows to compare how this new
approach behaves according to the complexity of the problem.

Table 1: Features of the different datasets designed.

Dataset Id. Tasks Multi-UAV Tasks UAVs GCSs NFZs Time Dependencies

1 6 0 5 2 2 1

2 8 2 5 3 3 2

3 12 3 6 3 3 3

4 16 4 8 3 4 4

The newMOGA-CSP approach, with its WPF is compared against a previous
approach [8] where the CSP is used as a penalty function (BPF). To setup the
MOGA of both approaches, the selection criteria (µ + λ) used was 100 + 1000,
where λ is the number of offspring (population size), and µ the elitism size, i.e.
the number of the best parents that survive from current generation to the next.
The mutation probability is 10%, and the number of generations used in the
stopping criteria is 10. Each problem is run 10 times, extracting for each one the
number of generations needed to converge, and the hypervolume metric [11] of
the solutions obtained. Results are shown in Table 2 and Table 3.

As shown in these tables, it is appreciable that the hypervolumes for both
approaches are similar in the fourth datasets. On the other hand, the number of
generations needed to converge decrease in the MOGA-CSP-WP approach re-
spect to the MOGA-CSP-BP approach as the complexity of the problem grows.
In Figure 5, the gap of improvement of the convergence between the two ap-
proaches as the complexity grows is clearly appreciated. With this, we can say
that considering the number of constraints as a heuristic decreases the conver-
gence time. This is due to the big search space of complex problems compared
to its small solution space. For simpler problems, as dataset 1, it is appreciable
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Table 2: Number of generations until convergence for the MOGA-CSP-BP and
the new MOGA-CSP-WP approach.

Dataset Id.
MOGA-CSP-BP MOGA-CSP-WP

Min. Avg. Max. Min. Avg. Max.

1 47 55.2 72 49 56.4 67

2 122 142.6 163 97 123.9 142

3 594 629.8 647 472 489.4 507

4 1304 1321.4 1351 875 956.1 1012
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Fig. 5: Average number of generations until convergence for the MOGA-CSP-BP
and the new MOGA-CSP-WP approach.

Table 3: Hypervolume results of the solutions obtained by the MOGA-CSP-BP
and the new MOGA-CSP-WP approach.

Dataset Id.
MOGA-CSP-BP MOGA-CSP-WP

Min. Avg. Max. Min. Avg. Max.

1 0 0.04 0.1 0 0.05 0.12

2 0 1.18 2.03 0 0.97 1.57

3 32.68 59.24 87.35 44.73 61.83 80.15

4 112.34 118.56 132.15 111.98 120.01 134.79

that the results are pretty similar. This is due to the smaller search space, which
could induce to find valid solutions in early generations of the algorithm.

5 Conclusions

In this paper, we have presented a MOGA-CSP approach using a weighted
penalty fitness function to solve Multi-UAV Mission Planning Problems. The
presented approach considers missions consisting of several tasks to be performed
by several UAVs using a specific sensor. Each UAV is controlled by a GCS and
use specific Flight Profiles. The problem has been modelled as a CSP considering
the assignments of tasks to UAVs, the orders of tasks, the assignments of UAVs
to GCSs, the sensors used for each task, the flight profiles used by each UAV in
its path to each assigned task and the return flight profile used by each UAV as
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variables; and several constraints involving these variables. On the other hand,
the encoding of the MOGA considers the same variables as the CSP. A new
fitness function has been designed for this approach: first the solution is check
with the CSP model and if it is not valid, the number of constraints unfulfilled is
used as weighted penalty function; otherwise, a multi-objective fitness function
optimizing several objectives is considered.

The experiments performed over several missions show that this new ap-
proach outperforms the results obtained previously in terms of convergence time,
specially for complex problems with huge search space and reduced solution
space. Nevertheless, these results could be outperformed combining other new
methodologies with this one, which is focused as future research.

Future works will focus on developing a Decision Support System (DSS)
for this problem, in order to select one solution among those obtained by the
algorithm according to some quality metrics and the GCS operator profile.
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